Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.10.13.22281024

ABSTRACT

Age is a major risk factor for hospitalization and death after SARS-CoV-2 infection, even in vaccinees. Suboptimal responses to a primary vaccination course have been reported in the elderly, but there is little information regarding the impact of age on responses to booster third doses. Here we show that individuals 70 or older who received a primary two dose schedule with AZD1222 and booster third dose with mRNA vaccine achieved significantly lower neutralizing antibody responses against SARS-CoV-2 spike pseudotyped virus compared to those younger than 70. One month after the booster neither the concentration of serum binding anti spike IgG antibody, nor the frequency of spike-specific B cells showed differences by age grouping. However, the impaired neutralization potency and breadth post-third dose in the elderly was associated with enrichment of circulating atypical spike-specific B cells expressing CD11c and FCRL5. Single cell RNA sequencing confirmed an expansion of TBX21-, ITGAX-expressing B cells in the elderly that enriched for B cell activation/receptor signalling pathway genes. Importantly we also observed impaired T cell responses to SARS-CoV-2 spike peptides in the elderly post-booster, both in terms of IFNgamma and IL2 secretion, as well as a decrease in T cell receptor signalling pathway genes. This expansion of atypical B cells and impaired T cell responses may contribute to the generation of less affinity-matured antibodies, with lower neutralizing capacity post-third dose in the elderly. Altogether, our data reveal the extent and potential mechanistic underpinning of the impaired vaccine responses present in the elderly after a booster dose, contributing to their increased susceptibility to COVID-19 infection.


Subject(s)
Severe Acute Respiratory Syndrome , Death , COVID-19
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.05.07.491004

ABSTRACT

Over 20 mutations have been identified in the N-Terminal Domain (NTD) of SARS-CoV-2 spike and yet few of them are fully characterised. Here we first examined the contribution of the NTD to infection and cell-cell fusion by constructing different VOC-based chimeric spikes bearing B.1617 lineage (Delta and Kappa variants) NTDs and generating spike pseudotyped lentivirus (PV). We found the Delta NTD on a Kappa or WT background increased spike S1/S2 cleavage efficiency and virus entry, specifically in Calu-3 lung cells and airway organoids, through use of TMPRSS2. Delta was previously shown to have fast cell-cell fusion kinetics and increased fusogenicity that could be conferred to WT and Kappa variant spikes by transfer of the Delta NTD. Moving to contemporary variants, we found that BA.2 had higher entry efficiency in a range of cell types as compared to BA.1. BA.2 showed higher fusogenic activity than BA.1, but the BA.2 NTD could not confer higher fusion to BA.1 spike. There was low efficiency of TMPRSS2 usage by both BA.1 and BA.2, and chimeras of Omicron BA.1 and BA.2 spikes with a Delta NTD did not result in more efficient use of TMRPSS2 or cell-cell fusogenicity. We conclude that the NTD allosterically modulates S1/S2 cleavage and spike-mediated functions such as entry and cell-cell fusion in a spike context dependent manner, and allosteric interactions may be lost when combining regions from more distantly related spike proteins. These data may explain the lack of dominant SARS-CoV-2 inter-variant recombinants bearing breakpoints within spike.


Subject(s)
Severe Acute Respiratory Syndrome
3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.05.07.491022

ABSTRACT

The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) presents a great threat to human health. The interplay between the virus and host plays a crucial role in successful virus replication and transmission. Understanding host-virus interactions is essential for development of new COVID-19 treatment strategies. Here we show that SARS-CoV-2 infection triggers redistribution of cyclin D1 and cyclin D3 from the nucleus to the cytoplasm, followed by its proteasomal degradation. No changes to other cyclins or cyclin dependent kinases were observed. Further, cyclin D depletion was independent from SARS-CoV-2 mediated cell cycle arrest in early S phase or S/G2/M phase. Cyclin D3 knockdown by small interfering RNA specifically enhanced progeny virus titres in supernatants. Finally, cyclin D3 co-immunoprecipitated with SARS-CoV-2 Envelope and Membrane proteins. We propose that cyclin D3 inhibits virion assembly and is depleted during SARS-CoV-2 infection to restore efficient assembly and release of newly produced virions.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.05.04.22274668

ABSTRACT

Background: There are no data on vaccine elicited neutralising antibody responses for the most widely used vaccine, AZD1222, in African populations following scale up. Here, we measured i. baseline SARS-CoV-2 seroprevalence and levels of protective antibodies prior to vaccination rollout using both flow cytometric based analysis of binding antibodies to nucleocapsid (N), coupled with virus neutralisation approaches and ii. neutralizing antibody responses to VOC prior to vaccination (January 2021) and after two-doses of AZD1222 vaccine administered between June and July 2021 in Lagos, Nigeria, during a period when the Delta variant was also circulating. Methods: Health workers at multiple sites in Lagos were recruited to the study. For binding antibody measurement, IgG antibodies against SARS-COV-2 Wuhan-1 receptor-binding domain (RBD), trimeric spike protein (S), nucleocapsid protein (N) and Omicron S1 were measured using the Luminex-based SARS-CoV-2-IgG assay by flow cytometry. For plasma neutralising antibody measurement, SARS-CoV-2 lentiviral pseudovirus (PV) were prepared by transfecting 293T cells with Wuhan-614G wild type (WT), B.1.617.2 (Delta) and BA.1 (Omicron) plasmids in conjunction with HIV-1 expression vectors and luciferase encoding genome flanked by LTRs. We performed serial plasma dilutions from each time point and mixed plasma with PV before infecting HeLa-ACE2 cell lines, reading out luminescence and calculating ID50 (dilution of sera required to inhibit 50% of PV infection). Results: Our study population who received at least one dose of vaccine comprised 140 participants with a median age of 40 (interquartile range: 33, 48). 62/140 (44%) participants were anti-N IgG positive prior to administration of first vaccine dose. 49 had plasma samples available at baseline prior to vaccination and at two follow-up timepoints post vaccination for neutralization assays. Half of the participants, 25/49 (51%) were IgG anti-N positive at baseline. Of the 24 individuals anti-N Ab negative at baseline, 12/24 had ID50 above the cut-off of 20. In these individuals, binding antibodies to S were also detectable, and neutralisation correlated with IgG anti-S. Overall, neutralizing Ab titres to WT 1 month after second dose were 2579 and at 3 months post second-dose were 1695. As expected, lower levels of neutralization were observed against the Delta GMT 549 and Omicron variants 269 at 1 month. Positive anti-N IgG Ab status at baseline was associated with significantly higher titres of neutralizing antibodies following vaccination across all tested VOC. Those with anti-N Abs present at baseline did not experience waning of responses between months 1 and 3 post second dose. When data were analysed for negative anti-N IgG status at any timepoint, there was a significant decline in neutralization and binding antibodies between 1 month and 3 months post second-dose. The GMT in these individuals for Delta and Omicron was approximately 100, nearly a log lower in comparison to WT. We tested anti-N IgG in subjects who were anti-N IgG negative at baseline (n=78) and became positive between 1- and 3-months post second dose and found 7/49 (14%) with de-novo infection, with one additional participant demonstrating both reinfection and breakthrough infection to yield a total breakthrough rate of 8/49 (16%). Neutralising and binding Ab titres 1 month post vaccine, prior to breakthrough, did not appear to be associated with breakthrough infection. Neutralizing titres were higher at the last time point in individuals who had experienced vaccine breakthrough infection (with no evidence of infection prior to vaccine), indicating a boosting effect of infection in addition to vaccine. We noted that the increase in titres against Delta PV observed in breakthrough was significantly greater than the increase for WT and Omicron PVs, coincident with in the Delta wave of infection during the sampling period. Conclusions: AZD1222 is immunogenic in this real world west African cohort with significant background seroprevalence and incidence of breakthrough infection over a short time period. Prior infection and breakthrough infection induced higher anti-SARS-CoV-2 Ab responses at 3 months post vaccine against all widely circulating VOC. However, responses to Omicron BA.1 were reduced at three months regardless of prior exposure. Given that data suggesting that mRNA vaccine booster third doses induce broader, more potent responses with reduced mortality in the elderly, further doses after AZD1222 should be considered for those at high risk.


Subject(s)
Breakthrough Pain
5.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.08.481609

ABSTRACT

The first SARS-CoV-2 variant of concern (VOC) to be designated was lineage B.1.1.7, later labelled by the World Health Organisation (WHO) as Alpha. Originating in early Autumn but discovered in December 2020, it spread rapidly and caused large waves of infections worldwide. The Alpha variant is notable for being defined by a long ancestral phylogenetic branch with an increased evolutionary rate, along which only two sequences have been sampled. Alpha genomes comprise a well-supported monophyletic clade within which the evolutionary rate is more typical of SARS-CoV-2. The Alpha epidemic continued to grow despite the continued restrictions on social mixing across the UK, and the imposition of new restrictions, in particular the English national lockdown in November 2020. While from a case-number perspective these interventions succeeded in reducing the absolute number of cases of SARS-CoV-2 in the UK, the impact of these non-pharmaceutical interventions was predominantly to drive the decline of those SARS-CoV-2 lineages that preceded Alpha. We investigate the only two sampled sequences that fall on the branch ancestral to Alpha. We find that one is likely to be a true intermediate sequence, providing information about the order of mutational events that led to Alpha. We explore alternate hypotheses that can explain how Alpha acquired a large number of mutations yet remained largely unobserved in a region of high genomic surveillance: an under-sampled geographical location, a non-human animal population, or a chronically-infected individual. We conclude that the last hypothesis provides the best explanation of the observed behaviour and dynamics of the variant, although we find that the individual need not be immunocompromised, as persistently-infected immunocompetent hosts also display a higher within-host rate of evolution. Finally, we compare the ancestral branches and mutation profiles of other VOCs to each other, and identify that Delta appears to be an outlier both in terms of the genomic locations of its defining mutations, and its lack of rapid evolutionary rate on the ancestral branch. As new variants, such as Omicron, continue to evolve (potentially through similar mechanisms) it remains important to investigate the origins of other variants to identify ways to potentially disrupt their evolution and emergence.

6.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.14.476382

ABSTRACT

Among the 30 non-synonymous nucleotide substitutions in the Omicron S-gene are 13 that have only rarely been seen in other SARS-CoV-2 sequences. These mutations cluster within three functionally important regions of the S-gene at sites that will likely impact (i) interactions between subunits of the Spike trimer and the predisposition of subunits to shift from down to up configurations, (ii) interactions of Spike with ACE2 receptors, and (iii) the priming of Spike for membrane fusion. We show here that, based on both the rarity of these 13 mutations in intrapatient sequencing reads and patterns of selection at the codon sites where the mutations occur in SARS-CoV-2 and related sarbecoviruses, prior to the emergence of Omicron the mutations would have been predicted to decrease the fitness of any virus within which they occurred. We further propose that the mutations in each of the three clusters therefore cooperatively interact to both mitigate their individual fitness costs, and, in combination with other mutations, adaptively alter the function of Spike. Given the evident epidemic growth advantages of Omicron over all previously known SARS-CoV-2 lineages, it is crucial to determine both how such complex and highly adaptive mutation constellations were assembled within the Omicron S-gene, and why, despite unprecedented global genomic surveillance efforts, the early stages of this assembly process went completely undetected.


Subject(s)
Seizures
7.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.17.473248

ABSTRACT

The Omicron variant emerged in southern Africa in late 2021 and is characterised by multiple spike mutations across all spike domains. Here we show that the Omicron spike confers very significant evasion of vaccine elicited neutralising antibodies that is more pronounced for ChAdOx-1 adenovirus vectored vaccine versus BNT162b2 mRNA vaccine. Indeed neutralisation of Omicron was not detectable for the majority of individuals who had received two doses of ChAdOx-1. Third dose mRNA vaccination rescues neutralisation in the short term. Despite three mutations predicted to favour spike S1/S2 cleavage, observed cleavage efficiency is lower than for wild type Wuhan-1 D614G and Delta. We demonstrate significantly lower infectivity of lung organoids and Calu-3 lung cells expressing endogenous levels of ACE2 and TMPRSS2 but similar infection as compared to Delta when using H1299 lung epithelial cells. Importantly, fusogenicity of the Omicron spike is impaired, leading to marked reduction in syncitia formation. These observations indicate that Omicron has gained immune evasion properties whilst possibly modulating properties associated with replication and pathogenicity.

8.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.11.19.21266406

ABSTRACT

Breakthrough infections with SARS-CoV-2 Delta variant have been reported in vaccine recipients and in individuals infected with previous variants, however the potential for doubly vaccinated individuals to transmit the virus is unclear. We here analyse data from health care workers in two hospitals in India, constructing probable transmission networks from epidemiological and virus genome sequence data. Among known cases we identify a high probability that doubly vaccinated individuals transmitted SARS-CoV-2, and potential cases of virus transmission between individuals who had received two doses of vaccine. Our findings highlight the need for ongoing infection control measures even in highly vaccinated populations.


Subject(s)
Breakthrough Pain , Infections
9.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.05.21264054

ABSTRACT

Patients on dialysis are at risk of severe course of SARS-CoV-2 infection. Understanding the neutralizing activity and coverage of SARS-CoV-2 variants of vaccine-elicited antibodies is required to guide prophylactic and therapeutic COVID-19 interventions in this frail population. By analyzing plasma samples from 130 hemodialysis (HD) and 13 peritoneal dialysis patients after two doses of BNT162b2 or mRNA-1273 vaccines, we found that 35% of the patients had low-level or undetectable IgG antibodies to SARS-CoV-2 Spike (S). Neutralizing antibodies against the vaccine-matched SARS-CoV-2 and Delta variant were low or undetectable in 49% and 77% of patients, respectively, and were further reduced against other emerging variants. The fraction of non-responding patients was higher in SARS-CoV-2-naive HD patients immunized with BNT162b2 (66%) than those immunized with mRNA-1273 (23%). The reduced neutralizing activity correlated with low antibody avidity, consistent with a delayed affinity maturation of SARS-CoV-2 S-specific B cells. These data indicate that dialysis patients should be considered for an additional boost and other therapeutic strategies, including early immunotherapy with monoclonal antibodies.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
11.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-637724.v1

ABSTRACT

The SARS-CoV-2 B.1.617.2 (Delta) variant was first identified in the state of Maharashtra in late 2020 and has spread throughout India, displacing the B.1.1.7 (Alpha) variant and other pre-existing lineages. Mathematical modelling indicates that the growth advantage is most likely explained by a combination of increased transmissibility and immune evasion. Indeed in vitro, the delta variant is less sensitive to neutralising antibodies in sera from recovered individuals, with higher replication efficiency as compared to the Alpha variant. In an analysis of vaccine breakthrough in over 100 healthcare workers across three centres in India, the Delta variant not only dominates vaccine-breakthrough infections with higher respiratory viral loads compared to non-delta infections (Ct value of 16.5 versus 19), but also generates greater transmission between HCW as compared to B.1.1.7 or B.1.617.1 (p=0.02). In vitro, the Delta variant shows 8 fold approximately reduced sensitivity to vaccine-elicited antibodies compared to wild type Wuhan-1 bearing D614G. Serum neutralising titres against the SARS-CoV-2 Delta variant were significantly lower in participants vaccinated with ChadOx-1 as compared to BNT162b2 (GMT 3372 versus 654, p<0001). These combined epidemiological and in vitro data indicate that the dominance of the Delta variant in India has been most likely driven by a combination of evasion of neutralising antibodies in previously infected individuals and increased virus infectivity. Whilst severe disease in fully vaccinated HCW was rare, breakthrough transmission clusters in hospitals associated with the Delta variant are concerning and indicate that infection control measures need continue in the post-vaccination era.

13.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.06.06.446781

ABSTRACT

Prevention of SARS-CoV-2 entry in cells through the modulation of viral host receptors, such as ACE2, could represent a new therapeutic approach complementing vaccination. However, the mechanisms controlling ACE2 expression remain elusive. Here, we identify the farnesoid X receptor (FXR) as a direct regulator of ACE2 transcription in multiple COVID19-affected tissues, including the gastrointestinal and respiratory systems. We demonstrate that FXR antagonists, including the over-the-counter compound z-guggulsterone (ZGG) and the off-patent drug ursodeoxycholic acid (UDCA), downregulate ACE2 levels, and reduce susceptibility to SARS-CoV-2 infection in lung, cholangiocyte and gut organoids. We then show that therapeutic levels of UDCA downregulate ACE2 in human organs perfused ex situ and reduce SARS-CoV-2 infection ex vivo. Finally, we perform a retrospective study using registry data and identify a correlation between UDCA treatment and positive clinical outcomes following SARS-CoV-2 infection, including hospitalisation, ICU admission and death. In conclusion, we identify a novel function of FXR in controlling ACE2 expression and provide evidence that this approach could be beneficial for reducing SARS-CoV-2 infection, thereby paving the road for future clinical trials.


Subject(s)
COVID-19 , Death , Gastrointestinal Diseases
14.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.23.21252268

ABSTRACT

The emergence and rapid rise in prevalence of three independent SARS-CoV-2 '501Y lineages', B.1.1.7, B.1.351 and P.1, in the last three months of 2020 has prompted renewed concerns about the evolutionarily capacity of SARS-CoV-2 to adapt to both rising population immunity and public health interventions such as vaccines and social distancing. Viruses giving rise to the different 501Y lineages have, presumably under intense natural selection following a shift in host environment, independently acquired multiple unique and convergent mutations. As a consequence all have gained epidemiological and immunological properties that will likely complicate the control of COVID-19. Here, by examining patterns of mutations that arose in SARS-CoV-2 genomes during the pandemic we find evidence of a major change in the selective forces acting on immunologically important SARS-CoV-2 genes (such as N and S) that likely coincided with the emergence of the 501Y lineages. In addition to involving continuing sequence diversification, we find evidence that a significant portion of the ongoing adaptive evolution of the 501Y lineages also involves further convergence between the lineages. Our findings highlight the importance of monitoring how members of these known 501Y lineages, and others still undiscovered, are convergently evolving similar strategies to ensure their persistence in the face of mounting infection and vaccine induced host immune recognition.


Subject(s)
COVID-19
15.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.03.21251054

ABSTRACT

Two dose mRNA vaccination provides excellent protection against SARS-CoV-2. However, there are few data on vaccine efficacy in elderly individuals above the age of 801. Additionally, new variants of concern (VOC) with reduced sensitivity to neutralising antibodies have raised fears for vulnerable groups. Here we assessed humoral and cellular immune responses following vaccination with mRNA vaccine BNT162b22 in elderly participants prospectively recruited from the community and younger health care workers. Median age was 72 years and 51% were females amongst 140 participants. Neutralising antibody responses after the first vaccine dose diminished with increasing age, with a marked drop in participants over 80 years old. Sera from participants below and above 80 showed significantly lower neutralisation potency against B.1.1.7, B.1.351 and P.1. variants of concern as compared to wild type. Those over 80 were more likely to lack any neutralisation against VOC compared to younger participants following first dose. The adjusted odds ratio for inadequate neutralisation activity against the B.1.1.7, P.1 and B.1.351 variant in the older versus younger age group was 4.3 (95% CI 2.0-9.3, p<0.001), 6.7 (95% CI 1.7-26.3, p=0.008) and 1.7 (95% CI 0.5-5.7, p=0.41). Binding IgG and IgA antibodies were lower in the elderly, as was the frequency of SARS-CoV-2 Spike specific B-memory cells. We observed a trend towards lower somatic hypermutation in participants with suboptimal neutralisation, and elderly participants demonstrated clear reduction in class switched somatic hypermutation, driven by the IgA1/2 isotype. SARS-CoV-2 Spike specific T-cell IFN{gamma} and IL-2 responses fell with increasing age, and both cytokines were secreted primarily by CD4 T cells. We conclude that the elderly are a high risk population that warrant specific measures in order to mitigate against vaccine failure, particularly where variants of concern are circulating.

16.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.15.426849

ABSTRACT

Multiple SARS-CoV-2 vaccines have shown protective efficacy, which is most likely mediated by neutralizing antibodies recognizing the viral entry protein, Spike. Antibodies from SARS-CoV-2 infection neutralize the virus by focused targeting of Spike and there is limited serum cross-neutralization of the closely-related SARS-CoV. As new SARS-CoV-2 variants are rapidly emerging, exemplified by the B.1.1.7, 501Y.V2 and P.1 lineages, it is critical to understand if antibody responses induced by infection with the original SARS-CoV-2 virus or the current vaccines will remain effective against virus variants. In this study we evaluate neutralization of a series of mutated Spike pseudotypes including a B.1.1.7 Spike pseudotype. The analyses of a panel of Spike-specific monoclonal antibodies revealed that the neutralizing activity of some antibodies was dramatically reduced by Spike mutations. In contrast, polyclonal antibodies in the serum of patients infected in early 2020 remained active against most mutated Spike pseudotypes. The majority of serum samples were equally able to neutralize the B.1.1.7 Spike pseudotype, however potency was reduced in a small number of samples (3 of 36) by 5-10-fold. This work highlights that changes in the SARS-CoV-2 Spike can alter neutralization sensitivity and underlines the need for effective real-time monitoring of emerging mutations and their impact on vaccine efficacy.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
17.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.11.20248765

ABSTRACT

In a study of 207 SARS-CoV2-infected individuals with a range of severities followed over 12 weeks from symptom onset, we demonstrate that an early robust immune response, without systemic inflammation, is characteristic of asymptomatic or mild disease. Those presenting to hospital had delayed adaptive responses and systemic inflammation already evident at around symptom onset. Such early evidence of inflammation suggests immunopathology may be inevitable in some individuals, or that preventative intervention might be needed before symptom onset. Viral load does not correlate with the development of this pathological response, but does with its subsequent severity. Immune recovery is complex, with profound persistent cellular abnormalities correlating with a change in the nature of the inflammatory response, where signatures characteristic of increased oxidative phosphorylation and reactive-oxygen species-associated inflammation replace those driven by TNF and IL-6. These late immunometabolic inflammatory changes and unresolved immune cell defects, if persistent, may contribute to "long COVID".


Subject(s)
Severe Acute Respiratory Syndrome , Chronobiology Disorders , COVID-19 , Inflammation
18.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.14.21249801

ABSTRACT

Severe Covid-19 is associated with elevated plasma Factor V (FV) and increased risk of thromboembolism. We report that neutrophils, T regulatory cells (Tregs), and monocytes from patients with severe Covid-19 express FV, and expression correlates with T cell lymphopenia. In vitro full length FV, but not FV activated by thrombin cleavage, suppresses T cell proliferation. Increased and prolonged FV expression by cells of the innate and adaptive immune systems may contribute to lymphopenia in severe Covid-19. Activation by thrombin destroys the immunosuppressive properties of FV. Anticoagulation in Covid-19 patients may have the unintended consequence of suppressing the adaptive immune system.


Subject(s)
COVID-19
19.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.14.422739

ABSTRACT

The fitness of a pathogen is composite phenotype determined by many different factors influencing growth rates both within and between hosts. Determining what factors shape fitness at the host population-level is especially challenging because both intrinsic factors like pathogen genetics and extrinsic factors such as host behaviour influence between-host transmission potential. These challenges have been highlighted by controversy surrounding the population-level fitness effects of mutations in the SARS-CoV-2 genome and their relative importance when compared against non-genetic factors shaping transmission dynamics. Building upon phylodynamic birth-death models, we develop a new framework to learn how hundreds of genetic and non-genetic factors have shaped the fitness of SARS-CoV-2. We estimate the fitness effects of all amino acid variants and several structural variants that have circulated in the United States between February and September 2020 from viral phylogenies. We also estimate how much fitness variation among pathogen lineages is attributable to genetic versus non-genetic factors such as spatial heterogeneity in transmission rates. Up to September 2020, most fitness variation between lineages can be explained by background spatial heterogeneity in transmission rates across geographic regions. Furthermore, no genetic variant including the Spike D614G mutation has had a significant effect on population-level fitness. Instead, the rapid increase in the frequency of the Spike D614G can be explained by the variant having a spatial transmission advantage due to first establishing in regions with higher transmission rates during the earliest stages of the pandemic.


Subject(s)
Seizures , Severe Acute Respiratory Syndrome , Death
20.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.14.422555

ABSTRACT

SARS-CoV-2 amino acid replacements in the receptor binding domain (RBD) occur relatively frequently and some have a consequence for immune recognition. Here we report recurrent emergence and significant onward transmission of a six-nucleotide out of frame deletion in the S gene, which results in loss of two amino acids: H69 and V70. We report that in human infections {Delta}H69/V70 often co-occurs with the receptor binding motif amino acid replacements N501Y, N439K and Y453F, and in the latter two cases has followed the RBD mutation. One of the {Delta}H69/V70+ N501Y lineages, now known as B.1.1.7, has undergone rapid expansion and includes eight S gene mutations: RBD (N501Y and A570D), S1 ({Delta}H69/V70 and {Delta}144) and S2 (P681H, T716I, S982A and D1118H). In vitro, we show that {Delta}H69/V70 does not reduce serum neutralisation across multiple convalescent sera. However, {Delta}H69/V70 increases infectivity and is associated with increased incorporation of cleaved spike into virions. {Delta}H69/V70 is able to compensate for small infectivity defects induced by RBD mutations N501Y, N439K and Y453F. In addition, replacement of H69 and V70 residues in the B.1.1.7 spike reduces its infectivity and spike mediated cell-cell fusion. Based on our data {Delta}H69/V70 likely acts as a permissive mutation that allows acquisition of otherwise deleterious immune escape mutations. Enhanced surveillance for the {Delta}H69/V70 deletion with and without RBD mutations should be considered as a global priority not only as a marker for the B.1.1.7 variant, but potentially also for other emerging variants of concern. Vaccines designed to target the deleted spike protein could mitigate against its emergence as increased selective forces from immunity and vaccines increase globally. HighlightsO_LI{Delta}H69/V70 is present in at least 28 SARS-CoV-2 lineages C_LIO_LI{Delta}H69/V70 does not confer escape from convalescent sera C_LIO_LI{Delta}H69/V70 increases spike infectivity and compensates for RBD mutations C_LIO_LI{Delta}H69/V70 is associated with greater spike cleavage C_LIO_LIB.1.1.7 requires {Delta}H69/V70 for optimal spike cleavage and infectivity C_LI

SELECTION OF CITATIONS
SEARCH DETAIL